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Nonlinear dynamic buckling of orthotropic cylindrical shells
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Abstract. Dynamic buckling of an orthotropic cylindrical shell which is subjected to rapidly applied compression
is considered. A nonlinear differential equation of Donnell–Karman type is derived with the initial imperfection
taken into account. An energy method is used to obtain the equation of motion which is then solved numerically
by means of a Runge-Kutta method. These numerical results show that the critical load is increased over the
corresponding static case. An analytical solution is also obtained for the problem of hydrostatic pressure.
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1. Introduction

Studies of structural dynamic instability began in the early 1950s. It is possible to classify
the problems of dynamic instability according to the types of loading, and the features of the
structural deformations during the instability process. Under such classification one group of
problems is that where instability occurs under rapidly applied loads. A rapidly applied load
differs from an impact load in that the time required to reach the critical load is greater than the
time required for a pressure wave to travel from one end of the element to the other. Therefore,
for a rapidly applied load, inertial effects in the middle plane of the element are negligible and
only the motion normal to the middle surface needs to be considered.

The use of anistropic materials (both homogeneous and composite) has been increasing
over the past years. Many applications involve shells and stiffened shells under loadings which
cause failure by buckling. The dynamic stability of orthotropic cylindrical shells and stiffened
shells which are treated as orthotropic ones if the stiffeners are densely placed has been
analysed by numerous investigators and, recent and representative results are contained in [1–
5]. In the present work, a circular orthotropic cylindrical shell, simply supported, subjected to
a rapidly applied load is considered. Two cases are investigated in this analysis. One case is
that the axial compressive loading is applied to the shell by a rigid testing machine, where the
load is increased rapidly at a controlled rate. The other case is that the cylinder is subjected
to a hydrostatic step pressure of infinite duration. Since the post-buckling behavior is to be
considered, the large-deflection shell equations must be used. The effects of initial imperfec-
tions are also included. It has been known for many years that the presence of small physical
or geometric imperfections in a given structure can lead to a decrease in its buckling strength.
Such structures are called imperfection-sensitive. Hutchinson and Budiansky [6] formulated
a general approximate theory of dynamic buckling of imperfection-sensitive structures by
an extension of Koiter’s static theory of post-buckling behaviour [7]. Lockhart [8, 9] and
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Figure 1. Shell geometry and coordinates.

Lockhart and Amazigo [10] studied the dynamic buckling of a finite cylinder subjected to a
lateral or hydrostatic pressure in the form of a step-loading, a problem similar to the present
one, by a perturbation technique.

Here we use an energy method. The Runge-Kutta method was used to obtain the numer-
ical results. The analytical solution is derived for the problem of hydrostatic pressure and
compared with the numerical solution.

2. Equations of motion

2.1. AXIAL COMPRESSION

The nonlinear equations of motion are based on the assumptions commonly used in a Donnell-
type formulation which is valid for a cylinder of moderate length. In the formulation of these
equations the following assumptions are made:

(1) Donnell’s nonlinear shell theory [11, pp. 200–201] is applicable;
(2) longitudinal and tangential inertia terms are of lower order of importance compared to

normal inertia.

Figure 1 shows the cylindrical shell geometry and coordinate system. Let(u, v) represent
the displacement components in the direction of the coordinate axes(x, y), respectively. The
quantityw is the inward normal displacement. Also, the stress and strain components are
denoted by(σx, σy, τxy) and(εx, εy, γxy), respectively.

Assume that the natural axes of the material coincide with the coordinate axes, so that the
middle-surface stress-strain relation may be written as σx

σy

τxy

 = 1

1− νxyνyx

 Ex νxyEy 0

νyxEx Ey 0

0 0 (1− νxyνyx)Gxy


 εx

εy

γxy

 , (1)

and εx

εy

γxy

 =
 1/Ex −νyx/Ey 0

−νxy/Ex 1/Ey 0

0 0 1/Gxy


 σx

σy

τxy

 , (2)
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whereEx,Ey , andGxy denote Young’s moduli in thex- andy-directions and the shear mod-
ulus, respectively;νxy represents the relative contraction in they-direction influenced by the
tension in thex-direction. Apparently, the relationExνyx = Eyνxy holds.

The critical load for a cylindrical shell under axial compression has been known to be
sensitive to initial imperfections in the shell. In order to investigate the effect of the initial
imperfections, one has to observe the post-buckling behavior and should include the second-
order strain-displacement relations

εx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

− 1

2

(
∂w0

∂x

)2

,

εy = ∂v

∂y
+ 1

2

(
∂w

∂y

)2

− 1

2

(
∂w0

∂y

)2

− w
R
+ w0

R
, (3a, b, c)

γxy = ∂u

∂y
+ ∂v
∂x
+ ∂w
∂x

∂w

∂y
− ∂w0

∂x

∂w0

∂y
.

In (3) w(x, y, t) is the total displacement normal to the middle surface andw0(x, y) is the
initial displacement normal to the middle surface.

Now, one may represent the stress components in terms of a stress functionF(x, y, t) in
the form as

σx = ∂2F

∂y2
, σy = ∂2F

∂x2
, τxy = − ∂2F

∂x ∂y
. (4a, b, c)

These automatically satisfy the equations of equilibrium in the plane tangent to the middle
surface of the shell when the body force is not included. Then, the compatibility equation
yields
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R

∂2w0

∂x2

]
. (5)

The deflection functionw(x, y, t) is chosen in the separable form

w(x, y, t) = f (t) sin
(mπx
L

)
sin
(ny
R

)
, (6)

wheref (t) is the time-varying amplitude ofw, andm andn represent the number of longitu-
dinal half-wave and circumferential waves, respectively.

In analyzing the effects of initial imperfections, one usually assumes the initial and final
shapes to be of the same basic form. Thus, the initial shape of the cylindrical shell will be
taken as

w0(x, y) = f0 sin
(mπx
L

)
sin
(ny
R

)
, (7)
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wheref0 is the amplitude. This also satisfies the boundary conditions.
Substitution of (6) and (7) in the compatibility equation (5) yields a particular solution for

a cylinder under the compressive pressureσ0 only

F(x, y, t) = Ey

[
β2

32m2
(f 2− f 2

0 ) cos

(
2mπx

L

)
+ m2

32k2β2
(f 2− f 2

0 ) cos

(
2ny

R

)

+ m2L2(f − f0)

Rπ2(m4+ b2m2β2 + k2β4)
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L

)
sin
(ny
R

)]
− σ0

y2

2
, (8)

whereσ0 is defined as the average value of the compressive stress in thex-direction, and

b2 = Ey

Gxy

− 2νxy
Ey

Ex
, k2 = Ey

Ex
= Dy

Dx

, β = nL

πR
. (9)

In Donnell’s theory the ‘stretching’ displacementv resulting from the changes of curvature
and twist is neglected. Thus, the moment can be expressed as

Mx = −
[
Dx

∂2w̄

∂x2
+Dyνyx

∂2w̄

∂y2

]
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[
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]
,
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h3

6
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,

(10)

where

w̄ = w − w0, Dx = Ex h3

12(1− νxyνyx) , Dy = Ey h3

12(1− νxyνyx) . (11)

Equations (10) are identical to the corresponding equations which appear in the theory of
plates [12]. From (10) the strain energy due to the bending can be written as
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2

∫ ∫
S
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dx dy. (12)

whereS denotes the surface of the cylindrical shell. Putting (6) and (7) into (12) and perform-
ing integration, we obtain

U1 = PA1(f − f0)
2, (13)

where

P = πρhRL/4, A1 = Dx

ρh

(π
L

)4
(m4+ k2β4 + 2β2m2c2), (14)

with

c2 = 1

Dx

[
1
2(Dxνxy +Dyνyx)+ h

3

6
Gxy

]
. (15)
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In (14) ρ is the mass density of the shell material. Using (2) and (4) we can write the strain
energy due to the stretching of the middle plane as

U2 = h

2

∫ ∫
S

(σxεx + σyεy + τxyγxy)dx dy = h

2

∫ ∫
S

[
1
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Substituting from (8) in (16), we find

U2 = P
[
H

2
(f 2− f 2

0 )
2+ A2(f − f0)

2+ 4σ 2
0

ρEx

]
, (17)

where
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16ρ

(π
L

)4 m4+ k2β4

k2
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ρR2

m4

(m4+ b2m2β2 + k2β4)
. (18a, b)

Next we consider the work done by the compressive force. Using for the axial strain before
buckling the notation

ε0 = − σ0

Ex
, (19)

we obtain

εx + νyxεy = ε0(1− νxyνyx). (20)

Observing that

εy = −νxyε0− w
R
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R
= −νxyε0− 1

R
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L

)
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)
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we find

εx − ε0 = νyx
(w
R
− w0

R

)
= νyx 1

R
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(mπx
L

)
sin
(ny
R

)
.

The work done by the compressive forces during buckling is

U3 = −σ0h

∫ 2πR

0

∫ L

0

[
εx − ε0+ 1

2

{(
∂w

∂x

)2

−
(
∂w0
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)2
}]
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0 )
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ρ

m2π2
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The kinetic energy is

K = 1
2hρ

∫ ∫
S

(ẇ)2 dx dy = P {ḟ (t)}2, (23)
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where the dot denotes differentiation with respect to timet . We define now the Lagrangian
function

L = K − U1− U2− U3

= P

[
{ḟ (t)}2− A(f − f0)

2− B(f 2− f 2
0 )−

H

2
(f 2− f 2

0 )
2− 4σ 2

0

Exρ

]
, (24)

where

A = A1+ A2, B = −σ0

ρ

m2π2

L2
. (25)

The Euler–Lagrange equation forf (t) associated with the above Lagrangian (24) is obtained
from

d

dt

(
∂L

∂ḟ

)
− ∂L
∂f
= 0. (26)

Substituting from (24) in (26), we obtain the Euler–Lagrange equation forf

d2f

dt2
+ A(f − f0)+ Bf +H(f 2− f 2

0 )f = 0. (27)

Omitting the inertia and nonlinear terms and settingf0 = 0, then we have that the resulting
equation is the corresponding static buckling equation using the linear theory which yields the
critical compressive stress

σcr = π2Ex

12(1− νxyνyx)
(
h

L

)2 [
(m4+ k2β4+ 2β2m2c2)

m2
+ 12(1− νxyνyx)k2L4

π4R2h2

× m2

(m4+ b2m2β2+ k2β4)

]
. (28)

If the shell is isotropic, thenνxy = νyx = ν,Ex = Ey = E, c2 = 1, k2 = 1, b2 = 2, and (28)
becomes

σcr(1− ν2)

E
= h2

12R2

(λ2+ n2)2

λ2
+ (1− ν

2)λ2

(λ2+ n2)2
, (29)

where

λ = mπR

L
. (30)

Equation (29) is exactly the same as the one from the classical linear theory [12, pp. 464–465].
The large-deflection equation describing the static post-buckling behavior is obtained by

omitting d2f/dt2 term from (27) withf0 = 0[
Dx

h

(π
L

)4
(m4+ k2β4+ 2β2m2c2)+ Ey

R2

m4
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]

+π
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For real values off , the quantity in the bracket should be negative.
As an example of the solution of (27), consider the case where the average compressive

stress increases linearly with time;σ0 = c0t . The equation of motion, (27), will have a more
convenient form if the following nondimensional parameters are introduced.

ζ = f

h
, ζ0 = f0

h
, τ = σ0

σcr
= c0t

σcr
, S = σ 3

crπ
2

ρL2c2
0

m2. (32)

With these substitutions, (27) becomes

d2ζ

dτ 2
+ S

[
ζ − ζ0+ π

2h2

16L2

Ex

σcr

(m4+ k2β4)

m2
(ζ 2− ζ 2

0 )ζ − τζ
]
= 0. (33)

2.2. HYDROSTATIC PRESSURE

In this section, we consider the case when the cylinder is subject to a hydrostatic pressure.
This analysis is particularly applicable in constructing submarine vessels of anisotropic ma-
terials, the prospect of which led to the recent surge in interest in the compressive failure
of anisotropic cylinders. For the present case, a little modification is necessary in (8). The
last term−σ0y

2/2 is to be replaced by−σ0x
2/2 with σ0 being the circumferential com-

pressive stress,σ0 = qR/h, whereq is the external hydrostatic pressure. This leads us to
replace 4σ 2

0/ρEx , the last term of (17), by 4σ20/ρEy . The work done by the circumferential
compressive force is now

U3 = −σ0h

∫ 2πR

0

∫ L

0

[
−w
R
+ w0

R
+ 1

2

{(
∂w

∂y

)2

−
(
∂w0

∂y

)2
}]

dx dy

= −σ0

ρ

( n
R

)2
P(f 2− f 2

0 ). (34)

Equation (27) remains unchanged, except thatB is now replaced by

B = −σ0

ρ

( n
R

)2
. (35)

The critical stress obtained from the static buckling equation of linear theory whenf0 = 0, is
then

σycr = m2

β2
σcr, (36)

whereσcr is given by (28). If the shell is isotropic, Equation (36) becomes

σycr = π2E

12(1− ν2)

(
h

L

)2 [
(m2+ β2)2

β2
+ 12Z2

π4

m4

β2(m2+ β2)2

]
, (37)

whereZ = L2
√

1− ν2/Rh. Equation (37) is exactly the same that obtained from the classical
linear theory [13]. As an example of (27), we consider the case when the cylinder is subjected
to a step pressure of infinite duration. Its time variation is considered as

q = 0 when t < 0, q = q0 when t > 0.
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Unlike the example considered in the previous section, we can solve this problem analytically
in terms of elliptic integrals. The nondimensional parameter fort in (32) is not suitable for the
present case, and we set

τ = 1

R

√
Ex

ρ
t, p = q0

pcr
, (38)

wherepcr = σycrh/R. With these substitutions, Equations (27) becomes

ζ̇ +A(ζ − ζ0− pζ)+B(ζ 2− ζ 2
0 )ζ = 0, (39)

where

A = n2pcr

Ex

R

h
, B = π4R2h2

16L4
(m4+ k2β4). (40)

After multiplying (39) with ζ̇ and integrating the resulting equation and using the initial
condition

ζ̈ = 0, ζ = ζ0, when τ = 0,

we obtain

ζ̇ 2 = −A(ζ − ζ0)
2+Ap(ζ 2− ζ 2

0 )−
B

2
(ζ 2− ζ 2

0 )
2. (41)

Let us write (41) as

ζ̇ 2 = B

2
(−ζ 4+ a1ζ

2+ a2ζ − a3) = B

2
(−ζ 2+ 2dζ + c1)(ζ

2+ 2dζ + c2), (42)

where

a1 = 2{ζ 2
0 + C(p − 1)}, a2 = 4ζ0C,

a3 = {ζ 2
0 + 2C(p + 1)}ζ 2

0 , C = A/B.
(43)

Thenb1 (= d2) satisfies following cubic equation

b3
1 −

a1

2
b2

1 +
{(a1

4

)2− a3

4

}
b1 − a

2
2

64
= 0. (44)

After solving (44), using the Cardano equation for correct solution, we find that it is appro-
priate to choosed = −√b1. Having obtainedd, we get the following results forc1 and
c2

c1 = 1

2

( a2

2d
+ a1 − 4d2

)
, c2 = 1

2

( a2

2d
− a1+ 4d2

)
. (45)

Let

S1 = −ζ 2+ 2dζ + c1, S2 = ζ 2+ 2dζ + c2, (46)
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then

S1− ξS2 = −(1+ ξ)ζ 2+ 2d(1− ξ)ζ + (c1− ξc2). (47)

Equation (47) will become a perfect square inζ if the following equation is satisfied

(1+ ξ)(c1− ξc2)+ (1− ξ)2d2 = 0. (48)

Let the two roots of the quadratic equation (48) beξ1 andξ2; then

S1− ξ1S2 = −(1+ ξ1)(ζ − α)2, S1− ξ2S2 = −(1+ ξ2)(ζ − γ )2, (49)

where

α = 1− ξ1

1+ ξ1
d, γ = 1− ξ2

1+ ξ2
d.

On solving (49) as equation inS1, S2, we obviously get the results

S1 = 1

ξ1− ξ2
[C1(ζ − α)2−D1(ζ − γ )2], S2 = 1

ξ1− ξ2
[C2(ζ − α)2−D2(ζ − γ )2], (50)

where

C1 = ξ2(1+ ξ1), D1 = ξ1(1+ ξ2), C2 = 1+ ξ1, D2 = 1+ ξ2. (51)

In (41), let us take a new variableT defined by the equation,

T = − ζ − α
ζ − γ . (52)

We then have

dτ = ± (ξ1− ξ2)
√

2

(α − γ )√B

dT√
D1− C1T 2

√
D2− C2T 2

. (53)

Again, by physical reasoning, the negative sign is chosen in (53). In (53) we put
T = √D2/C2 cosϕ, and then integrate it. There are two cases:

(1) if p > p0 (say), thenC1 > 0,
(2) if p < p0, thenC1 < 0.

In case (1), we have

τ = F1

∫ φ

0

dϕ√
1− k2 cos2 ϕ

, (54)

where

F1 = (ξ1− ξ2)
√

2

(α − γ )√BC2D1
, k =

(
C1D2

C2D1

)1/2

.



150 Doo-Sung Lee

In case (2), we have

τ = F2

∫ φ

0

dϕ√
1− k2 sin2 ϕ

, (55)

where

F2 = (ξ1− ξ2)
√

2

(α − γ )√B(C2D1− C1D2)
, k =

(
C1D2

C1D2− C2D1

)1/2

.

In (54) and (55), if we putφ = π/2, we obtain

T = 4FiK(k) (i = 1,2). (56)

In (56)T is the period of one cycle andK(k) is the complete elliptic integral of the first kind.
The nondimensional deflectionζ can be obtained from (52) as

ζ = α + γ e cosϕ

1+ e cosϕ
, (57)

wheree = √D2/C2. If p is less than some value which is smaller thanp0, we have the
solution of imaginaryζ .

If UT denotes the total potential energy, the dynamic buckling can be obtained from the
condition [14, 15, 16]

UT = 0,
dUT
dζ
= 0. (58a, b)

The dynamic instability occurs [14] when

dζ

dp
= ∞. (59)

Condition (58b) is obtained from (59). We do not find such point where (59) holds. The reason
is as follows. First, note that the right-hand side of (41) is proportional toUT . Thus, if we solve
(58a) and (58b) simultaneously, we obtain the following equation.

B(ζ − ζ0)
2(ζ + ζ0) = −2Apζ0.

We can immediately see that there are no positive values ofζ which satisfy the above equation.
A relaxed condition for the present problem will be

dζ

dp
= max. (60)

Solving (58a) and (60), we obtain as the maximum deflectionζ̄ at the point where the rate of
increment is at a maximum

ζ̄ = 3
√

4ζ0C − ζ0. (61)
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Table 1. Material properties.

Ex = 40× 106psi, νyx = 0·025,

Ey = 4× 106psi, k2 = 0·1,

Gxy = 1·5× 106psi, c2 = 0·0995,

νxy = 0·25, b2 = 2·66167.

Figure 2. Response curves forζ0 = 0·001.

Then we have forp

p = 1− (2ζ 2
0 C)2/3. (62)

3. Numerical examples

To illustrate the application of (33), numerical solutions are made for boron/epoxy cylindrical
shells of various geometries and at several loading rates. The material properties used are
shown in Table 1. The specific weight of the shell is 0·0585 lb/in3.

3.1. AXIAL COMPRESSION

Numerical results are presented for the cylindrical shellR/h = 100,l/R = 2, andh = 0·1 in.
Equation (33) was solved numerically by means of a variable-step fourth-order Runge-Kutta
method. The critical load is at a maximum whenm = 1. Assuming that the mode shapes
of the linear problem are also relevant in the nonlinear problem of imperfect cylinders, we
choose the critical number of circumferential waves as 6[12, pp. 474–82] and an asymmetric
mode withm = 1 is selected in the numerical calculation. Three values ofζ0− 0·001,0·005,
and 0·01 and two values ofc0 − 300,000 psi/sec and 600,000 psi/sec were used. The initial
conditions for the problem areζ = ζ0 and dζ/dτ = 0 at τ = 0. The numerical solution of
(33) are plotted in Figures 2–6 with the static solution included for comparison. Each shows
that there is initially a relatively slow increase of deflection, then a rapid increase, and finally
a series of nonlinear oscillations.
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Figure 3. Response curve forζ0 = 0·005. Figure 4. Response curves forζ0 = 0·01.

Figure 5. Response curves for various values ofn, ζ0 =
0·001, m= 1.

Figure 6. Response curves for various values ofm,
ζ0 = 0·001, n= 1.

These figures show the effect of the two loading rates on the response of shells having
the same initial imperfections. In each case the response curve for the faster loading rate
(c0 = 6 × 105) is to the right of that for the slower(c0 = 3 × 105). An examination of
Figure 2 shows that there is no definite point of instability as in static analyses. Rather, there
is a region of instability where the slope of theζvs.τ curve increases rapidly. Forc0 = 3×105

this region is betweenτ = 1·03 andτ = 1·05, while forc0 = 6× 105 it is betweenτ = 1·06
andτ = 1·1. Both response curves oscillate about the static response curve with increasing
frequency. At any value ofτ , the frequency forc0 = 6×105 is less than that forc0 = 3×105.
The amplitude of the oscillations, relative to the static curve, is greater for the faster loading
rate than for the slower. These oscillations result from the release of part of the strain energy
stored in the cylinder before buckling when the deflection is zero or very small. The time to
reach the region of instability is less for the slower rate and hence less strain energy is stored
before buckling. In Figure 3, the situation is very similar to that shown in Figure 2. In Figure 4
we notice that the curve for the slower loading rate is very similar to the static curve.

In Figure 5 we have plotted response curves for different values ofn, whilem is fixed to
1. Whenn = 2, the oscillation is most frequent, and we can notice from this figure that, asn

increases, the frequency as well as the deflection decrease and the region of instability appears
later, while the static instability occurs aroundτ = 1 for all values ofn. In Figure 5, values
are chosen asR/h = 50,L/R = 2, andc0 = 108 psi/sec. In Figure 6, we show response
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Table 2. Critical values of pressure ratio.

Initial imperfection pcr

0·0005 0·99999

0·001 0·99998

0·005 0·99986

0·01 0·99965

curves whenR/h = 150. Other values are same as in Figure 5. We can see that the situation
is similar to that of Figure 5 with the roles ofm andn being reversed.

3.2. HYDROSTATIC STEP LOAD

In the numerical example, the number of circumferential wavesn and longitudinal half-waves
m are chosen to be 6 and 1, respectively. The deflection response curves are plotted from the
analytical solution given by (57). In Figure 7 the typical response curves of the orthotropic
cylindrical shell under step pressure are shown.

Figure 7. Nonlinear response curves of the cylindrical
shell under step pressure.

Figure 8. Amplitude load curves for a cylindrical shell
under step pressure.

The numerical solution of (39) is also obtained by means of the fourth-order Runge-Kutta
method and compared with the analytical solution shown in Figure 7. The solid line is obtained
from the analytical solution and the dotted line from the numerical solution. The agreement
between two solutions is so excellent that the two curves are almost indistinguishable. An
examination of Figure 7 shows that there is no definite change of stability. SinceB in (39)
is positive, all solutions are bounded and periodic [9]. It is worth observing that the system
becomes dynamically stable for loads much higher than the dynamic buckling load, above a
certain level. This is called the metastability phenomenon [17]. In Figure 8 amplitude load
curves are shown.

Table 2 shows the critical values of the ratios between the dynamic pressure and the static
pressure on orthotropic cylindrical shells as calculated from (62).
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4. Conclusions

In the present work two types of loading are considered and the results of the investigation
may be summarized as follows:

When the shell is subjected to axial compression at a controlled rate

(1) A cylindrical shell compressed rapidly will buckle at a higher critical stress than a cylin-
drical shell compressed very slowly.

(2) The amplitude of oscillations increases as the loading rate is increased.
(3) Initial imperfections decrease the critical stress and the amplitude of postbuckling oscil-

lations.
(4) For a fixedm(n), asn(m) increases, the critical stress increases, while the amplitude of

postbuckling oscillations decreases.

When the shell is subjected to the hydrostatic step loading of infinite duration

(1) All solutions are bounded and periodic.
(2) When the critical loads are obtained from the condition (60), we notice that the effect of

initial imperfection on the cylindrical shell is not very significant.
(3) The dynamic buckling load can be approximated by the static buckling load, if the condi-

tion (60) is applied.
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